If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36t^2+23t=0
a = 36; b = 23; c = 0;
Δ = b2-4ac
Δ = 232-4·36·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-23}{2*36}=\frac{-46}{72} =-23/36 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+23}{2*36}=\frac{0}{72} =0 $
| 16x=52 | | -2=2w+8-5w | | 8+3m=5m-10 | | 9=4x+2x | | 6-6x2=-480 | | q*5/6=4 | | 7x+13=8x+7 | | (0.2x)=0 | | t +5t=6t | | 7(2-3x)=24-4x | | 2x+13=8x+7 | | 4a2-3=497 | | 198.25=24b+b | | -4.5=-0.5(x-7.1)= | | 6v+18=v-4v | | 4x=224-4x | | 7-2x+3=0 | | a/3+12=36 | | 2(x+4)-10=67 | | 4a2-100=0 | | x(2+30)=90 | | 3n2-3n-6=0 | | x+.08x+.225x=10136 | | n2-7n+10=0 | | x/3-4=6/5 | | 6x-3(2x+3)=9 | | 5x/2=3x(x+2) | | 5x-2.5x+0.5x=9 | | (x-6)^2+2=102 | | 2×(x+1)=78 | | 16(x-2)^2+1=0 | | 7x+0.1=190x-0.0001 |