If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2+25x-10=0
a = 35; b = 25; c = -10;
Δ = b2-4ac
Δ = 252-4·35·(-10)
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-45}{2*35}=\frac{-70}{70} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+45}{2*35}=\frac{20}{70} =2/7 $
| (x+40)=(3x+20)=(10x-20) | | x²+5.5x+7.5=0 | | 6x2-6x-1=0 | | 3-2n=1-2n | | 15x+30=1425 | | -5(-7u+7)=315 | | (x+30)/2=44 | | (x+30)/2=44 | | 17=3(p-5)18 | | x=1+3/10 | | 3(12-5)+8÷4=n | | 12m+80=180 | | 126.95=5(0.05m+0.10(19.90) | | Y=-2/5x+3/8 | | 144x2–358=3 | | 144x^2–358=3 | | 21=3gg= | | (5x-9+x+3)/2=2x+2 | | 15=-3(2x-7) | | x(x+1)=1/3+14 | | 5x-10=12x-4 | | k=-5−55515k= | | 2w+4w2–5w3= | | 6p=2×1/2(4p+8) | | 2x*3x*x=384 | | 3x/4-3x/4x=9x | | 2m-29=7(4m+7) | | 6.2=4+(100/x) | | (19x+3)=(9x+16)=(6x+15) | | 6.2=4+100/x | | 2=-2x-6x+10 | | 4(1/2x)+3=66 |