If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2+24x=27
We move all terms to the left:
35x^2+24x-(27)=0
a = 35; b = 24; c = -27;
Δ = b2-4ac
Δ = 242-4·35·(-27)
Δ = 4356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4356}=66$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-66}{2*35}=\frac{-90}{70} =-1+2/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+66}{2*35}=\frac{42}{70} =3/5 $
| |–6f|=–48 | | -6y-16=3(-2y-5) | | 7/3y=31/6 | | 3(4x-5)+5=4(2x-1)+x | | 5k+18k-18=20k+15 | | 7a+a=3a+9 | | 15−3x=9 | | 6x+99=15 | | 3(2x+4)=4(3x-6) | | 2a^2+5a+2=3 | | 5(-4r+2)=-1+11-20r | | x²+76²=100² | | 1/7s=1/9s | | x+6+4x-21=0 | | 3x–6+2x=5x+3 | | -7x-12=5x | | x+8/3=10/3 | | 8h+350=1000 | | 4-12+3y=4(2y-7)+5 | | −5(x+1)≥=−45 | | -10t+9=-16 | | (b/4)+6=19 | | 6(5r-4)+3(r-2)+8=14 | | 15p+150=300 | | 65h+195h=520 | | e-9e+8-2e-7=21 | | 3.9x=-19 | | 57(7x+19)=180 | | -3w+8=-12 | | 90+57(7x+19)=180 | | 4(-4+4n)+2n=3-n | | c/9=405 |