34=l2+13

Simple and best practice solution for 34=l2+13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 34=l2+13 equation:



34=l2+13
We move all terms to the left:
34-(l2+13)=0
We add all the numbers together, and all the variables
-(+l^2+13)+34=0
We get rid of parentheses
-l^2-13+34=0
We add all the numbers together, and all the variables
-1l^2+21=0
a = -1; b = 0; c = +21;
Δ = b2-4ac
Δ = 02-4·(-1)·21
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{21}}{2*-1}=\frac{0-2\sqrt{21}}{-2} =-\frac{2\sqrt{21}}{-2} =-\frac{\sqrt{21}}{-1} $
$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{21}}{2*-1}=\frac{0+2\sqrt{21}}{-2} =\frac{2\sqrt{21}}{-2} =\frac{\sqrt{21}}{-1} $

See similar equations:

| 34x2+13=34 | | 43+8x-405=2x+4 | | 7x-32+8x+2=90 | | 120=7h-12h | | 3+4x=13x+6 | | 5x^2-7x-25=0 | | 9q+8=8+10q-8 | | 8(x+7)-6=90 | | -19u=-20u-12 | | Z-3÷2=z+8÷6 | | -6x+76=-3x+49 | | -7p=-8p-8 | | 7a-5a=-10-14 | | 22.45x=12.95 | | x-6+x-6x=3+10 | | 7+8p=5p-8 | | 5+2(n+1|)=2n | | Z-3÷2=z8÷6 | | 34-13=l/2 | | -7(x–3)=-4 | | -17+7z-17=10z+11 | | 9-9b-12b=-7b+23 | | -6f+9=-7f-1 | | -x-(13+4x)=-3(5-9x)-12 | | .5t^2+2t+16=0 | | y/7+4/7+9/4y-6/4=23 | | 22.45x=18.95 | | 100*q=4.6525 | | x(x-12)=15 | | 8x−8−16x2=0 | | x(x-12(=15 | | x(x-12)-15=0 |

Equations solver categories