345+5x=180/x*27

Simple and best practice solution for 345+5x=180/x*27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 345+5x=180/x*27 equation:



345+5x=180/x*27
We move all terms to the left:
345+5x-(180/x*27)=0
Domain of the equation: x*27)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5x-(+180/x*27)+345=0
We get rid of parentheses
5x-180/x*27+345=0
We multiply all the terms by the denominator
5x*x*27+345*x*27-180=0
Wy multiply elements
135x^2*2+9315x*2-180=0
Wy multiply elements
270x^2+18630x-180=0
a = 270; b = 18630; c = -180;
Δ = b2-4ac
Δ = 186302-4·270·(-180)
Δ = 347271300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{347271300}=\sqrt{8100*42873}=\sqrt{8100}*\sqrt{42873}=90\sqrt{42873}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18630)-90\sqrt{42873}}{2*270}=\frac{-18630-90\sqrt{42873}}{540} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18630)+90\sqrt{42873}}{2*270}=\frac{-18630+90\sqrt{42873}}{540} $

See similar equations:

| -4(p-6)+2p=|5-3+6| | | 3^2n+15=35 | | X*((345+5x)/27)=180 | | -7(1-4m)=13(2m-3) | | -2(x+12)+1=7x+4 | | 4^3x-10=8 | | -9(v+10)-9v=4 | | 345+5x-(8100/x)=0 | | 5/2n-2n=20 | | 3m+49=9m-5 | | I5x+13I=-7 | | 2^1n+12=21 | | -8/3x=-5 | | 3x+8=7x+6 | | -1/4(x-2)(x+6)=0 | | 345x+5(x^2)=8100 | | 48-2y=6 | | 8=7x+8 | | 30-2y=6 | | 345x+5x^2=8100 | | 1/2n+12=21 | | -15c(c-8)=0 | | 15x+21=-204 | | 2+(x-8)+1=0 | | 2+(x-8)+1=8 | | 5v-18=-143 | | 2x+4x-3=9+4x/5 | | X/2=x-3/2 | | 4x2-4x-13=0 | | 7x-6/5=3 | | 12n-11=157 | | 9x^-42x+49=0 |

Equations solver categories