345+5x-(8100/x)=0

Simple and best practice solution for 345+5x-(8100/x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 345+5x-(8100/x)=0 equation:



345+5x-(8100/x)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5x-(+8100/x)+345=0
We get rid of parentheses
5x-8100/x+345=0
We multiply all the terms by the denominator
5x*x+345*x-8100=0
We add all the numbers together, and all the variables
345x+5x*x-8100=0
Wy multiply elements
5x^2+345x-8100=0
a = 5; b = 345; c = -8100;
Δ = b2-4ac
Δ = 3452-4·5·(-8100)
Δ = 281025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{281025}=\sqrt{225*1249}=\sqrt{225}*\sqrt{1249}=15\sqrt{1249}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(345)-15\sqrt{1249}}{2*5}=\frac{-345-15\sqrt{1249}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(345)+15\sqrt{1249}}{2*5}=\frac{-345+15\sqrt{1249}}{10} $

See similar equations:

| 5/2n-2n=20 | | 3m+49=9m-5 | | I5x+13I=-7 | | 2^1n+12=21 | | -8/3x=-5 | | 3x+8=7x+6 | | -1/4(x-2)(x+6)=0 | | 345x+5(x^2)=8100 | | 48-2y=6 | | 8=7x+8 | | 30-2y=6 | | 345x+5x^2=8100 | | 1/2n+12=21 | | -15c(c-8)=0 | | 15x+21=-204 | | 2+(x-8)+1=0 | | 2+(x-8)+1=8 | | 5v-18=-143 | | 2x+4x-3=9+4x/5 | | X/2=x-3/2 | | 4x2-4x-13=0 | | 7x-6/5=3 | | 12n-11=157 | | 9x^-42x+49=0 | | 2250=(1500+x)/5000 | | 8n-13=-149 | | (11/3)=x/1500 | | 1+1/3=x/1500 | | 9a+15=-111 | | 3750=5000/x | | -11y+10=175 | | ^x+x=30 |

Equations solver categories