If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x^2+15x=0
a = 32; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·32·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*32}=\frac{-30}{64} =-15/32 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*32}=\frac{0}{64} =0 $
| 5d+5=4d-8 | | 0.8m=5 | | 1/r=1/6.510-7+1/5.02*10-6+1/1.78×10-8 | | (6a-3)+(4a-2)=75 | | 17+37(3x−5)=−4 | | x+2.75x=4,125 | | |8x-1|=0 | | -4(2y+-4)=16 | | 8x-120=108-4x | | 62=13y | | (2n+4)+(3n+6)=90 | | 7−2b=3 | | 15a–54=-9 | | 245=177-y | | -v+181=139 | | 8x+7=-9} | | -w+34=219 | | -5x^2-70x-200=0 | | 435=(25+x)+3X | | t÷5/12=-3/10 | | 3x-18=3x/4 | | 2y=-7+1 | | 3x^2+5+15x=0 | | r^2-2r+19=0 | | (1.05^x)=1.5 | | 7x+4=13x-4 | | x²+8x=6x+3 | | 4+x=59 | | 40(x)+10(1.5x)=1000 | | (20+x)(-40+x)=2700 | | (b-2)2/5=1.2 | | (2-b)2/5=1.2 |