If it's not what You are looking for type in the equation solver your own equation and let us solve it.
320=16t^2+4t
We move all terms to the left:
320-(16t^2+4t)=0
We get rid of parentheses
-16t^2-4t+320=0
a = -16; b = -4; c = +320;
Δ = b2-4ac
Δ = -42-4·(-16)·320
Δ = 20496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20496}=\sqrt{16*1281}=\sqrt{16}*\sqrt{1281}=4\sqrt{1281}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{1281}}{2*-16}=\frac{4-4\sqrt{1281}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{1281}}{2*-16}=\frac{4+4\sqrt{1281}}{-32} $
| 2x2−10x+11=0 | | 4^(2x)-4^(x+1)-5=0 | | x/25=5/3 | | 28=164m | | 2(x+8)=-4x(x+4) | | 2x(4x+1)=Y | | 6t−7+2t=5(t+4) | | -c/5+8=11 | | 3x-10=92 | | -45+y=-5(7) | | 3x-1x5=55 | | -45+y=-5/75 | | 3x-1•5=55 | | 3(x/3+2=-9 | | 12x-6+5x=11 | | 3x-9=x+19 | | 5x-2/9=2 | | 11+6k=95 | | 201=-15x+36 | | 3w=3/4 | | 65+8x=153 | | 98=7(r+6) | | 2=-2p+9+3p | | 16x^2+50x=225 | | a÷10.5=5.75 | | 64-12*2+6+3=x | | 5p+4=60 | | (7x+4)-(2x-3)=26 | | u/6-1=6 | | 5x/2+40=500 | | X+12=(6x÷2) | | -93=-30-3x |