2(x+8)=-4x(x+4)

Simple and best practice solution for 2(x+8)=-4x(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x+8)=-4x(x+4) equation:



2(x+8)=-4x(x+4)
We move all terms to the left:
2(x+8)-(-4x(x+4))=0
We multiply parentheses
2x-(-4x(x+4))+16=0
We calculate terms in parentheses: -(-4x(x+4)), so:
-4x(x+4)
We multiply parentheses
-4x^2-16x
Back to the equation:
-(-4x^2-16x)
We get rid of parentheses
4x^2+16x+2x+16=0
We add all the numbers together, and all the variables
4x^2+18x+16=0
a = 4; b = 18; c = +16;
Δ = b2-4ac
Δ = 182-4·4·16
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{17}}{2*4}=\frac{-18-2\sqrt{17}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{17}}{2*4}=\frac{-18+2\sqrt{17}}{8} $

See similar equations:

| 2x(4x+1)=Y | | 6t−7+2t=5(t+4) | | -c/5+8=11 | | 3x-10=92 | | -45+y=-5(7) | | 3x-1x5=55 | | -45+y=-5/75 | | 3x-1•5=55 | | 3(x/3+2=-9 | | 12x-6+5x=11 | | 3x-9=x+19 | | 5x-2/9=2 | | 11+6k=95 | | 201=-15x+36 | | 3w=3/4 | | 65+8x=153 | | 98=7(r+6) | | 2=-2p+9+3p | | 16x^2+50x=225 | | a÷10.5=5.75 | | 64-12*2+6+3=x | | 5p+4=60 | | (7x+4)-(2x-3)=26 | | u/6-1=6 | | 5x/2+40=500 | | X+12=(6x÷2) | | -93=-30-3x | | (180/x)(200/x)=180 | | 8(7d+3)=17 | | X+12=6x÷2 | | k/8=3/11 | | -17=37+3x |

Equations solver categories