32(x+3)-5=813/4x

Simple and best practice solution for 32(x+3)-5=813/4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 32(x+3)-5=813/4x equation:



32(x+3)-5=813/4x
We move all terms to the left:
32(x+3)-5-(813/4x)=0
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
32(x+3)-(+813/4x)-5=0
We multiply parentheses
32x-(+813/4x)+96-5=0
We get rid of parentheses
32x-813/4x+96-5=0
We multiply all the terms by the denominator
32x*4x+96*4x-5*4x-813=0
Wy multiply elements
128x^2+384x-20x-813=0
We add all the numbers together, and all the variables
128x^2+364x-813=0
a = 128; b = 364; c = -813;
Δ = b2-4ac
Δ = 3642-4·128·(-813)
Δ = 548752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{548752}=\sqrt{16*34297}=\sqrt{16}*\sqrt{34297}=4\sqrt{34297}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(364)-4\sqrt{34297}}{2*128}=\frac{-364-4\sqrt{34297}}{256} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(364)+4\sqrt{34297}}{2*128}=\frac{-364+4\sqrt{34297}}{256} $

See similar equations:

| C(x)=0.08x+14.50 | | 32(x+3)-5=813/4x= | | 3j+7=47 | | x+x0.15+x0.25=11500 | | 6-5y+y2=0 | | 4=y/3+2 | | x+3/10=7 | | x3/10=7 | | x+x0.15+x0.25+3500=15000 | | 4*(n+9)=(4*5)+(4*9) | | (n+2)​2​​−n​2=4(n+1) | | 11x=24+6x | | xx3=0.008 | | 5/12d+1/6d+1/3D=6 | | 12-10b=2b | | 0.2+3x=1.4+1x | | 3(0.5x=3/2x-1.2 | | (u-5)=(u+4) | | 8^2+8x+2=0 | | 3^(x+1)=(27^x)/9 | | 3^x+1=(27^x)/9 | | 180=10*5^x | | 10x-7=2x-29 | | 3(u-7)=-5u+43 | | j/3=4.5j= | | x*2=750 | | C=f-32÷1.8 | | 5+3x=6-3x | | h+93=1 | | 8x+20=4() | | 1+1x=3 | | 16x2+24x+9=0 |

Equations solver categories