5/12d+1/6d+1/3D=6

Simple and best practice solution for 5/12d+1/6d+1/3D=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/12d+1/6d+1/3D=6 equation:



5/12d+1/6d+1/3=6
We move all terms to the left:
5/12d+1/6d+1/3-(6)=0
Domain of the equation: 12d!=0
d!=0/12
d!=0
d∈R
Domain of the equation: 6d!=0
d!=0/6
d!=0
d∈R
determiningTheFunctionDomain 5/12d+1/6d-6+1/3=0
We calculate fractions
432d^2/648d^2+270d/648d^2+108d/648d^2-6=0
We multiply all the terms by the denominator
432d^2+270d+108d-6*648d^2=0
We add all the numbers together, and all the variables
432d^2+378d-6*648d^2=0
Wy multiply elements
432d^2-3888d^2+378d=0
We add all the numbers together, and all the variables
-3456d^2+378d=0
a = -3456; b = 378; c = 0;
Δ = b2-4ac
Δ = 3782-4·(-3456)·0
Δ = 142884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{142884}=378$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(378)-378}{2*-3456}=\frac{-756}{-6912} =7/64 $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(378)+378}{2*-3456}=\frac{0}{-6912} =0 $

See similar equations:

| 12-10b=2b | | 0.2+3x=1.4+1x | | 3(0.5x=3/2x-1.2 | | (u-5)=(u+4) | | 8^2+8x+2=0 | | 3^(x+1)=(27^x)/9 | | 3^x+1=(27^x)/9 | | 180=10*5^x | | 10x-7=2x-29 | | 3(u-7)=-5u+43 | | j/3=4.5j= | | x*2=750 | | C=f-32÷1.8 | | 5+3x=6-3x | | h+93=1 | | 8x+20=4() | | 1+1x=3 | | 16x2+24x+9=0 | | 2x+2=2x-6 | | F(x)=×+9 | | x+2(3x)+3x=130 | | x+2x+3x=1800 | | S=5t+45 | | 18-3x=57 | | 3/4x=9 | | 4x-13=1/2x+13 | | (30-2x)*(14-2x)*x=420 | | 9r+2=56 | | 22x-9-17x=4=17x-5-12x+11 | | -9b+6+7b=3b+11 | | 6(x+3)-10=32 | | 3(2x-3)-5=16 |

Equations solver categories