If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2-80=0
a = 30; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·30·(-80)
Δ = 9600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9600}=\sqrt{1600*6}=\sqrt{1600}*\sqrt{6}=40\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{6}}{2*30}=\frac{0-40\sqrt{6}}{60} =-\frac{40\sqrt{6}}{60} =-\frac{2\sqrt{6}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{6}}{2*30}=\frac{0+40\sqrt{6}}{60} =\frac{40\sqrt{6}}{60} =\frac{2\sqrt{6}}{3} $
| 2(c-12)=-4 | | 9=v÷4 | | 4r-12=2r | | 1.3n+3.4=10 | | |4u+2|=6 | | 2c+58=180 | | 180=58+2c | | 4x*4x+9x+15=0 | | 6(x+10)+x=4(x+4)-8 | | 17x-20=59 | | 1/12=2^(3/4)/x | | 17x-20=193 | | 1/12=2(3/4)/x | | x•x+x•x•x=810 | | 3.4-5.1x+1.7x^2=0 | | 4s-43=65 | | 9s−2s=14 | | 5u-4u=11 | | 9d+4d+5d-6-6d=0 | | .50=2m | | 19b+49=12b+56 | | X/4+4=8-z/4 | | 5/6q-4=14 | | 50w+80=180 | | x=118 | | 144=12(x=5) | | 19y+45=9y+55 | | 13h=143 | | -12=12(11+6x)-8(8x-1) | | 7x+21=94 | | 876+x=5000 | | 6/14=21/x |