300+.014x=200+.025x(.011x)=100

Simple and best practice solution for 300+.014x=200+.025x(.011x)=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 300+.014x=200+.025x(.011x)=100 equation:



300+.014x=200+.025x(.011x)=100
We move all terms to the left:
300+.014x-(200+.025x(.011x))=0
We add all the numbers together, and all the variables
.014x-(200+.025x(+.011x))+300=0
We calculate terms in parentheses: -(200+.025x(+.011x)), so:
200+.025x(+.011x)
determiningTheFunctionDomain .025x(+.011x)+200
We multiply parentheses
x^2+200
Back to the equation:
-(x^2+200)
We get rid of parentheses
-x^2+.014x-200+300=0
We add all the numbers together, and all the variables
-1x^2+.014x+100=0
a = -1; b = .014; c = +100;
Δ = b2-4ac
Δ = .0142-4·(-1)·100
Δ = 400.000196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(.014)-\sqrt{400.000196}}{2*-1}=\frac{-0.014-\sqrt{400.000196}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(.014)+\sqrt{400.000196}}{2*-1}=\frac{-0.014+\sqrt{400.000196}}{-2} $

See similar equations:

| 7x-5=5x9 | | (4+3)*a=18 | | 2a*a=18 | | (6+c)/(-13)=-3 | | 4(2m+5)=84 | | -24=-7x+3x | | -1+2x=-10+x | | -12-a=4a+3 | | 2x-2/3=831/3 | | 15x+700=30x | | 5(x+7)=7x-35-2x | | 2/3x+5/8=3x-5/2 | | -4(x+3)=48 | | 15x+1200=30x-1500 | | -5k/2+3k=5/4 | | 59.4x=70 | | 5x+17=4x-10 | | 1.10x=70 | | 300-12s=200 | | 7x-3=5x+4^2-1 | | 1/3(w-6)=2/9(w+18) | | 1/3(w-6)=2/9(w-18) | | 1.18x=70 | | 6x-2x+5=11 | | 90+3x-6+2x+66=360 | | 5x+103=13x-9 | | 100+70+75+x=360 | | 2x+3+3x+2=15 | | 2x/20=200 | | 109=5x+x | | 5(y-10)=-10 | | 62-4x=14-4x |

Equations solver categories