If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30+b2=180
We move all terms to the left:
30+b2-(180)=0
We add all the numbers together, and all the variables
b^2-150=0
a = 1; b = 0; c = -150;
Δ = b2-4ac
Δ = 02-4·1·(-150)
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{6}}{2*1}=\frac{0-10\sqrt{6}}{2} =-\frac{10\sqrt{6}}{2} =-5\sqrt{6} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{6}}{2*1}=\frac{0+10\sqrt{6}}{2} =\frac{10\sqrt{6}}{2} =5\sqrt{6} $
| 30+90+a=180 | | 2x^2+4x=720 | | 12=(5/3n) | | 2(3x+x)=96 | | (2x+4)·x=720 | | x+12=3(2-x) | | .0635x+x=100 | | 2c-7÷3=25 | | 35.36*x=3536 | | 10x+8=4x+38=5 | | 60+120+120+x=360 | | 2+x+1=78 | | 6-2/7x=-4 | | 9-w=4.1 | | (x+75)+(x+125)=180 | | 6-2/7x=4 | | 5(b-11)=35 | | 12x-20=5x+8 | | 2=1.0375^x | | 31(g−3)g−3g=3=9=12 | | -12=49x-5) | | 19-5x=5x | | C=35.00-0.10x | | (2x/5)+5x=(4/3) | | 40+6x=100+x | | 288=104-y | | 3x=15*7 | | 6(3b-4)=2(b-1) | | 1.6x=8.8 | | 4+12c=12c-11 | | (3x-4)/2=(x-1)/6 | | 12c-4=12c-11 |