3/x-3/x+1=5/2x

Simple and best practice solution for 3/x-3/x+1=5/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/x-3/x+1=5/2x equation:



3/x-3/x+1=5/2x
We move all terms to the left:
3/x-3/x+1-(5/2x)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3/x-3/x-(+5/2x)+1=0
We get rid of parentheses
3/x-3/x-5/2x+1=0
We calculate fractions
(-6x+3)/2x^2+(-5x)/2x^2+1=0
We multiply all the terms by the denominator
(-6x+3)+(-5x)+1*2x^2=0
Wy multiply elements
2x^2+(-6x+3)+(-5x)=0
We get rid of parentheses
2x^2-6x-5x+3=0
We add all the numbers together, and all the variables
2x^2-11x+3=0
a = 2; b = -11; c = +3;
Δ = b2-4ac
Δ = -112-4·2·3
Δ = 97
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{97}}{2*2}=\frac{11-\sqrt{97}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{97}}{2*2}=\frac{11+\sqrt{97}}{4} $

See similar equations:

| 7/5+3/5x=23/10+3/2x+1/2 | | -108=3(-4k-8) | | 6+2x-5=8x+17-4x | | a/7+21=-12 | | -35=v+42-5v | | 30+60=20p | | X+2y-4=180 | | -1x=−16 | | 2(4c−1)−4=6c+8 | | 16+r+5r=3r-5 | | 6x+8+8x-7=85 | | 7x+9+3x=11x−7 | | 11x+18=232 | | X=1/10x+9 | | 2c+c+0.75c=60 | | -2y+4=33y(-3) | | 2x+4+3x-x=x+16 | | x+2Y+4=180 | | 6.5+1.3n=2.73 | | 0=2+3t-4t^2 | | (1/4m-9)=6 | | 20,000+7,800h=43,000 | | 17=2x-4+2x-7 | | 2x+3x+6=11 | | 3x+1-7x=-15 | | 2x+4x+3x-x=x+16 | | 1/2(8-2x)=3(2-x) | | 7t-10=6+7t | | x/5+x/10=7 | | -3b+5=-12 | | 3x+1-7x=15 | | 5m+15+9=3m-6+6 |

Equations solver categories