If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/w-7+3/w=3w-18/w-7
We move all terms to the left:
3/w-7+3/w-(3w-18/w-7)=0
Domain of the equation: w!=0
w∈R
Domain of the equation: w-7)!=0We get rid of parentheses
w∈R
3/w+3/w-3w+18/w+7-7=0
We multiply all the terms by the denominator
-3w*w+7*w-7*w+3+3+18=0
We add all the numbers together, and all the variables
-3w*w+24=0
Wy multiply elements
-3w^2+24=0
a = -3; b = 0; c = +24;
Δ = b2-4ac
Δ = 02-4·(-3)·24
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*-3}=\frac{0-12\sqrt{2}}{-6} =-\frac{12\sqrt{2}}{-6} =-\frac{2\sqrt{2}}{-1} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*-3}=\frac{0+12\sqrt{2}}{-6} =\frac{12\sqrt{2}}{-6} =\frac{2\sqrt{2}}{-1} $
| (6x+4)+136=180 | | (7t-2)-(-3t+1)=-3(1-3t)= | | 1-4q=-5q-6 | | |x|=x^2+x-3 | | 8x=8x+9 | | 4y+-4(y+2)=3(3y+4)+2 | | L=3w+4 | | 5v=-5+6v | | 1+6-3x=11 | | -3x+12=-5x+16 | | 2x^2+20x-6300=0 | | .8a=16 | | -4=7z-18 | | 5(4x−2)=−10(−2x+1) | | 5x-6-6x=9 | | (y/13)=(3/11) | | 1x+3=3x+3 | | -5z/7=15 | | 3q-6q=3 | | 2(x+4)+(2x+9)=90 | | 5x+15=6x+4 | | 3n-(n+4)=22 | | 3(2z+-1)+5=5(z+1) | | -5x+16=5x-14 | | 12+1.5x=18+0.75x | | c-4/5=5/2 | | 14/22=x/99 | | 8.5-9.6=3.1b+1.2 | | -7x+5x-6x=0 | | m/1=7.3 | | 5(h+3)-9=4(h+2)-2 | | 2n+3=3n+7 |