3/5y+y=1800

Simple and best practice solution for 3/5y+y=1800 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5y+y=1800 equation:



3/5y+y=1800
We move all terms to the left:
3/5y+y-(1800)=0
Domain of the equation: 5y!=0
y!=0/5
y!=0
y∈R
We add all the numbers together, and all the variables
y+3/5y-1800=0
We multiply all the terms by the denominator
y*5y-1800*5y+3=0
Wy multiply elements
5y^2-9000y+3=0
a = 5; b = -9000; c = +3;
Δ = b2-4ac
Δ = -90002-4·5·3
Δ = 80999940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80999940}=\sqrt{196*413265}=\sqrt{196}*\sqrt{413265}=14\sqrt{413265}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9000)-14\sqrt{413265}}{2*5}=\frac{9000-14\sqrt{413265}}{10} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9000)+14\sqrt{413265}}{2*5}=\frac{9000+14\sqrt{413265}}{10} $

See similar equations:

| x+.08x=10000 | | x+.08=10000 | | Y=-16x^2+100x | | 6-12x=6^7 | | 1/5(5x-30)=-2/3(2x-18) | | 128^x=4.X= | | 2-17=x-9 | | 5y+15-y=3y+10 | | 6(x+2.5)=2x | | K(6)=4x-9 | | 4*(2x+7)=68 | | 15x+3=75 | | 2(2x-1)=-10(x-4) | | -8=5.d | | 2x^+5x-268=0 | | 3x+42=40 | | 15+x(3)=75 | | f-3.5=6. | | 150+(2x+100)=180 | | 15+3(x)=75 | | 47.5+93=x | | 47.5+x=93 | | 2t=40 | | 15x(3)=75 | | 7(2x+2)=2(2x+4) | | 7+3+10x=3x+2 | | 10k+21k+9=0 | | 27=35x | | 16-8x-28-4x=-3 | | 2+3+20+12x=20x+1 | | 16-8x+28-4x=-3 | | 3m^2+10=1 |

Equations solver categories