3/5x+1/20=1/4x

Simple and best practice solution for 3/5x+1/20=1/4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5x+1/20=1/4x equation:



3/5x+1/20=1/4x
We move all terms to the left:
3/5x+1/20-(1/4x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3/5x-(+1/4x)+1/20=0
We get rid of parentheses
3/5x-1/4x+1/20=0
We calculate fractions
80x^2/800x^2+480x/800x^2+(-200x)/800x^2=0
We multiply all the terms by the denominator
80x^2+480x+(-200x)=0
We get rid of parentheses
80x^2+480x-200x=0
We add all the numbers together, and all the variables
80x^2+280x=0
a = 80; b = 280; c = 0;
Δ = b2-4ac
Δ = 2802-4·80·0
Δ = 78400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{78400}=280$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(280)-280}{2*80}=\frac{-560}{160} =-3+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(280)+280}{2*80}=\frac{0}{160} =0 $

See similar equations:

| -7=4x+2x+x= | | 12+36=13y-7y= | | 5x-4/3x-10)=3/2 | | 9=10r-16r+5r= | | 3+15=12b-3b= | | 10+4=2a+5a= | | X+11y=-10 | | 6x-14x+3x=40= | | 4x+7x-4x=56= | | 4x+7-4x=56= | | 30/5=x | | 5x-3x+6x=56= | | 4x*x*x+3x+1=0 | | 7x^2+56x+90=0 | | 2x+x=9+9= | | 15-3p=2/3p+5 | | 9x-11=7x+6 | | (x^2+6x+2)=(x^2+2x+10) | | 4x-9+6x=101 | | 2+5.3k=11.1 | | 45=5x+5x-5 | | -4x+3x-8=-7 | | 9x-14=8x+6 | | (7−2i)(7+2i)=53 | | -10=7x+2-9x | | 4(3x-5)=-68 | | (7-2i)(7+21)=0 | | X=1.7x+4.7x | | 0.25x^2+6x=-11 | | a^2+4a^2=15^2 | | 48+16=32y= | | 720=n^2/2+n/2 |

Equations solver categories