3/5a+4=2a+11a

Simple and best practice solution for 3/5a+4=2a+11a equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5a+4=2a+11a equation:



3/5a+4=2a+11a
We move all terms to the left:
3/5a+4-(2a+11a)=0
Domain of the equation: 5a!=0
a!=0/5
a!=0
a∈R
We add all the numbers together, and all the variables
3/5a-(+13a)+4=0
We get rid of parentheses
3/5a-13a+4=0
We multiply all the terms by the denominator
-13a*5a+4*5a+3=0
Wy multiply elements
-65a^2+20a+3=0
a = -65; b = 20; c = +3;
Δ = b2-4ac
Δ = 202-4·(-65)·3
Δ = 1180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1180}=\sqrt{4*295}=\sqrt{4}*\sqrt{295}=2\sqrt{295}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{295}}{2*-65}=\frac{-20-2\sqrt{295}}{-130} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{295}}{2*-65}=\frac{-20+2\sqrt{295}}{-130} $

See similar equations:

| 12(1-5(4z-1)=3(24+11z) | | 2y+2y+1=5 | | 18/x=3/15 | | 10-3y=47 | | 7=4b=-21 | | -2n=+4n | | 30x-2=180 | | (2+i)(2+i)=0 | | 4x2+44x+122=0 | | 5t+4=6t | | 2x-3(4x+7)=57 | | x+94848484848484848=9 | | (2+i)(2+1)=0 | | -8-8x=-48 | | 1/3(12-24w)=-2(4w-2) | | q-26=57 | | 1.1x+0.55=2.2x | | 3/x-5=3/2x+1 | | 4-2x+3+7=10 | | -2-4x-x=-37 | | 8(q+1)-5=3(2q-4)-1 | | -11+10p+100=4-10-55 | | 4+9v+5=-6v | | 12x+12+72=180 | | 100=v+2 | | 2(4x+2)=4x-12(2x-1) | | 7u=5u−6 | | x+9+18x-8=20 | | 11=6x-47 | | (x+5)^4=80 | | -11(x+8)=99 | | -2(x+6)=4(x-3)-6x |

Equations solver categories