3/4x=24x=16

Simple and best practice solution for 3/4x=24x=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x=24x=16 equation:



3/4x=24x=16
We move all terms to the left:
3/4x-(24x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
-24x+3/4x=0
We multiply all the terms by the denominator
-24x*4x+3=0
Wy multiply elements
-96x^2+3=0
a = -96; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-96)·3
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{2}}{2*-96}=\frac{0-24\sqrt{2}}{-192} =-\frac{24\sqrt{2}}{-192} =-\frac{\sqrt{2}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{2}}{2*-96}=\frac{0+24\sqrt{2}}{-192} =\frac{24\sqrt{2}}{-192} =\frac{\sqrt{2}}{-8} $

See similar equations:

| -7g=-8g-6 | | 3x+7=3x+10-3 | | 14b-10=-8 | | 74/80=x/100 | | 3x+1=256 | | 0.60x=24 | | 17x=7x*30 | | 3(4+a)=8 | | 5-3x=3x-17 | | 6y+12=7+13y | | 0.40x=24 | | 20w-8w+4w-13w=14 | | .75x+28.50=36.75 | | 78=6+6h | | 6x-6=7x+1= | | 3x+4x+5x=4x(x+2) | | 5=s/5-1 | | 4x(1.5)+5x=33 | | 4x+4=64−6x | | x=x+21 | | 3+2(4x-4)=-10 | | 4x=3x=90 | | 3n+1.75=9.25 | | g+17=5 | | -3(18-x)=-21 | | 2°x+10=120°-x | | 3x=4x=5x=4(x=2) | | 5j+55=16j | | 7r-6=104 | | 4(6x+1)-5=3(4x+3)+38 | | -3y+4=-6y-2 | | 13y=6y+21 |

Equations solver categories