3/4x-19=7/2x+25

Simple and best practice solution for 3/4x-19=7/2x+25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x-19=7/2x+25 equation:



3/4x-19=7/2x+25
We move all terms to the left:
3/4x-19-(7/2x+25)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 2x+25)!=0
x∈R
We get rid of parentheses
3/4x-7/2x-25-19=0
We calculate fractions
6x/8x^2+(-28x)/8x^2-25-19=0
We add all the numbers together, and all the variables
6x/8x^2+(-28x)/8x^2-44=0
We multiply all the terms by the denominator
6x+(-28x)-44*8x^2=0
Wy multiply elements
-352x^2+6x+(-28x)=0
We get rid of parentheses
-352x^2+6x-28x=0
We add all the numbers together, and all the variables
-352x^2-22x=0
a = -352; b = -22; c = 0;
Δ = b2-4ac
Δ = -222-4·(-352)·0
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{484}=22$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-22}{2*-352}=\frac{0}{-704} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+22}{2*-352}=\frac{44}{-704} =-1/16 $

See similar equations:

| (3d/8)=(7/4) | | (3d/6)=((3/9) | | (3d)/(6)=(3)/(9) | | -6n+16=-4n-4 | | -9n+14=7n-2 | | (X+225)/12=1/3x | | n4+5n2=O(n4) | | 8(t+6)+10=8t+58 | | 4^2x+3=21 | | 5n=O(n2) | | 6.28×y=88 | | 2×3.14×y=88 | | -0.1x+2.73=-0.3x+5.53 | | 6.6x=-38.94 | | 9.2=x/3 | | 2a-7=-4(a+8) | | 3(x−9)=6(x+5)−x | | 6n-8=1-n | | 3/4x=124 | | 124x=3/4 | | (x^2+3x+2)(2x+3)(2x+5)=30 | | 4x2+4×=0 | | 3x+33=9x+3 | | 3y+6=75 | | x2-18x+864=0 | | 5v-2=3v+10 | | 3.4y+7.2=5.4y-4.5 | | Y=-2.3x+4.1 | | 7x+1.75=17.5 | | 7x-9x-44=180 | | 7x-9x-44=18 | | x^2+44x-435=0 |

Equations solver categories