3/4x-12=2.5x-40

Simple and best practice solution for 3/4x-12=2.5x-40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x-12=2.5x-40 equation:



3/4x-12=2.5x-40
We move all terms to the left:
3/4x-12-(2.5x-40)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We get rid of parentheses
3/4x-2.5x+40-12=0
We multiply all the terms by the denominator
-(2.5x)*4x+40*4x-12*4x+3=0
We add all the numbers together, and all the variables
-(+2.5x)*4x+40*4x-12*4x+3=0
We multiply parentheses
-8x^2+40*4x-12*4x+3=0
Wy multiply elements
-8x^2+160x-48x+3=0
We add all the numbers together, and all the variables
-8x^2+112x+3=0
a = -8; b = 112; c = +3;
Δ = b2-4ac
Δ = 1122-4·(-8)·3
Δ = 12640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12640}=\sqrt{16*790}=\sqrt{16}*\sqrt{790}=4\sqrt{790}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(112)-4\sqrt{790}}{2*-8}=\frac{-112-4\sqrt{790}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(112)+4\sqrt{790}}{2*-8}=\frac{-112+4\sqrt{790}}{-16} $

See similar equations:

| `6=4-k/3 | | −56=5a-11 | | 48f=6 | | (x-5)-90=180 | | 4(p-12)=16 | | (x-5)-90=90 | | 91-x=46 | | `6x^{2}+21x=0` | | 90+5x-3x+9=180 | | 15=5x/13 | | 24c-20=-4(1-6c | | 6x+7(-4x)=22 | | 5d–11=6d+14 | | 5c/7=15 | | 5c/7=12 | | 9^=h | | 40=2p | | 4(x+1.2)=x+2x+2.5+4.5 | | 7x+10+11x=-14 | | 0,3=0,02-0,001x | | (7x+10)(11x=-14) | | 5/4=10/v | | Y=-0.75x+9 | | 3x45=(3x)+(3x) | | m+5=3m-9 | | 11=-7-4h | | T=480-15m | | (7x+10)=(11x-14) | | (14x–15)+139=180 | | 9x-7=~7 | | 9g+6=8g+13 | | −23=-4a+1 |

Equations solver categories