3/4x+6=3/7x+3

Simple and best practice solution for 3/4x+6=3/7x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x+6=3/7x+3 equation:



3/4x+6=3/7x+3
We move all terms to the left:
3/4x+6-(3/7x+3)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 7x+3)!=0
x∈R
We get rid of parentheses
3/4x-3/7x-3+6=0
We calculate fractions
21x/28x^2+(-12x)/28x^2-3+6=0
We add all the numbers together, and all the variables
21x/28x^2+(-12x)/28x^2+3=0
We multiply all the terms by the denominator
21x+(-12x)+3*28x^2=0
Wy multiply elements
84x^2+21x+(-12x)=0
We get rid of parentheses
84x^2+21x-12x=0
We add all the numbers together, and all the variables
84x^2+9x=0
a = 84; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·84·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*84}=\frac{-18}{168} =-3/28 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*84}=\frac{0}{168} =0 $

See similar equations:

| 3=1/8+x | | –7d−5 = –5 | | 8x-8-6x=8 | | 1.1x+3=8 | | 10x-(2x-7)=31 | | 10+3x=170 | | 4(10+x)=‐6(2-x)-6x | | 1x-8=+2 | | -19-3h=2 | | 15x-9x=13+11 | | 2,000f+100=1,800f+150 | | 2x+(12-8)=2+9+2x | | 12-4r=-8(5r+3) | | 14+2x=-2x+14 | | x+2(x-1)=3(5-x)-5 | | -7(7a+3)=5a-21 | | -12u-48=-48 | | 12(z+3)-4(z-3)=4(z-2)+3(z-4) | | 2x-12-13x=10 | | 25a+1/5=43 | | 7a+5+4a=16 | | 2(k−4)−5=3 | | 2x+6/2=2x+4/4 | | 27x-6.00=8.25x | | 40=-10(y+0.3) | | 4/5(4-7x)=-20 | | 9(x-3)=7x-3 | | 20+.20m=30.60 | | -3x+4+5=-3 | | 3x²+9=-27 | | 11x-172+9x=168 | | -16.5z=-5.75-19z |

Equations solver categories