3/4n-16=2-1/8n

Simple and best practice solution for 3/4n-16=2-1/8n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4n-16=2-1/8n equation:



3/4n-16=2-1/8n
We move all terms to the left:
3/4n-16-(2-1/8n)=0
Domain of the equation: 4n!=0
n!=0/4
n!=0
n∈R
Domain of the equation: 8n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
3/4n-(-1/8n+2)-16=0
We get rid of parentheses
3/4n+1/8n-2-16=0
We calculate fractions
24n/32n^2+4n/32n^2-2-16=0
We add all the numbers together, and all the variables
24n/32n^2+4n/32n^2-18=0
We multiply all the terms by the denominator
24n+4n-18*32n^2=0
We add all the numbers together, and all the variables
28n-18*32n^2=0
Wy multiply elements
-576n^2+28n=0
a = -576; b = 28; c = 0;
Δ = b2-4ac
Δ = 282-4·(-576)·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{784}=28$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-28}{2*-576}=\frac{-56}{-1152} =7/144 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+28}{2*-576}=\frac{0}{-1152} =0 $

See similar equations:

| 3.96=28x | | 4x-10+8x+46=180 | | 5(-2x+1)=-45 | | -x+8=-5-4x | | -44=10-15x+16 | | 3x+(x+14)=58 | | -8(x-2)=4(2-2x) | | 6-4K=-2-6k | | (45n+60)+n(2/5)=-41 | | -28=-3k-10 | | 3/8x-4.5=0.4 | | 27-2x=-7-(-3x-4) | | -4(-1+4x)=-92 | | 2u+6=1 | | -21/4m=77/8 | | 74=-7x+28+11 | | 5r+2(3r-1)=-45 | | -136=8(n-10) | | 2(3-x/4)=2x+5/3=-1/3 | | 2(2x+x-3)=3(x+5) | | (c+17)=(c+14)=c+47 | | 2408=28x | | 8+18+30x=56 | | 4c-18=2c-2+8c | | -14+x-1+17x=1+12x+8 | | (2-p)6+-23=19 | | s+(s-48)=s+44 | | -105=-3(7-4x | | 8x=4x-(x-4) | | -31/2b-21/4b=-115/12 | | 2.4=-0.8x+3.4 | | −1.6+5x=1+4(x+1.5)+3x |

Equations solver categories