3/2x+6=2/5x+10

Simple and best practice solution for 3/2x+6=2/5x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2x+6=2/5x+10 equation:



3/2x+6=2/5x+10
We move all terms to the left:
3/2x+6-(2/5x+10)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x+10)!=0
x∈R
We get rid of parentheses
3/2x-2/5x-10+6=0
We calculate fractions
15x/10x^2+(-4x)/10x^2-10+6=0
We add all the numbers together, and all the variables
15x/10x^2+(-4x)/10x^2-4=0
We multiply all the terms by the denominator
15x+(-4x)-4*10x^2=0
Wy multiply elements
-40x^2+15x+(-4x)=0
We get rid of parentheses
-40x^2+15x-4x=0
We add all the numbers together, and all the variables
-40x^2+11x=0
a = -40; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·(-40)·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*-40}=\frac{-22}{-80} =11/40 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*-40}=\frac{0}{-80} =0 $

See similar equations:

| 25÷n=5 | | 4x+90=3(x-12) | | x=x-58=180 | | 5(2c=7)-2c=7(c+5) | | 2x=(7/8x)-15 | | 4x+2x+3x+6x=360 | | 3b+5=5b-13 | | 2(6a-1)=-5/3(3a+15)+6 | | 2z+9.75-7z=(-5.15) | | 17=6u-7 | | 1/2-7/12k=1/6k+11/4 | | -3(5x-7)+16=2(3x-1.5) | | -21=9-3w | | 5+7s=6s | | 5(7-m)=31-m | | -15(7/8x)=2x | | 7/8x-15=2x | | -8(y+7)=-40 | | 4+bb=26 | | y/2-3.04=-2.14 | | (8x/9)-7=x | | 12=47+-1x | | 3.2d-17.88=(-d)+30 | | X=-1.2x^2+315x-0.03x^2-2x^2+70x+500 | | 8x9-7=x | | -8−6g=3+5g | | 0.02+0.07(16000-x)=1070 | | 36=7y-y | | -8|x/3|=-16 | | 2k-(-3)=5 | | 25x/6-3/2=13/6x3/2 | | u/2-14=-10 |

Equations solver categories