3/2x+5=1/5x+9

Simple and best practice solution for 3/2x+5=1/5x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2x+5=1/5x+9 equation:



3/2x+5=1/5x+9
We move all terms to the left:
3/2x+5-(1/5x+9)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x+9)!=0
x∈R
We get rid of parentheses
3/2x-1/5x-9+5=0
We calculate fractions
15x/10x^2+(-2x)/10x^2-9+5=0
We add all the numbers together, and all the variables
15x/10x^2+(-2x)/10x^2-4=0
We multiply all the terms by the denominator
15x+(-2x)-4*10x^2=0
Wy multiply elements
-40x^2+15x+(-2x)=0
We get rid of parentheses
-40x^2+15x-2x=0
We add all the numbers together, and all the variables
-40x^2+13x=0
a = -40; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·(-40)·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*-40}=\frac{-26}{-80} =13/40 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*-40}=\frac{0}{-80} =0 $

See similar equations:

| -2p-3=-+19 | | 4;-7+5y=10 | | 8x^2-19x-10=0 | | 3/2x+3=1/5x+9 | | 3(6x+8)-3=18x+21 | | 2x+7=9+8 | | 2+3x8-2+1=30 | | -12+x=39 | | 9x-21=4x+9 | | -4g=196 | | 3m=2+7 | | |4x-11|=17 | | -4y=136 | | 11+p=p-6 | | 4;6=-2+2y | | 3/5-3-5(x/2-3)=3/2(x/5-1)-3 | | 9x+4+16x-4+80=180 | | 1.9x+.2(10-x)=12.2 | | X^3+12x-19=0 | | -3;2a+5=-1 | | 15x-6x=1x-16 | | 3(k-2)=21 | | 9x+4+16x-4=180 | | -3(x-17)=-21 | | 3(k-2=21 | | 9x+4=16x-4+80 | | 6a-(10-a)=20-(a+2) | | 6e=102 | | 1,1=-4+5s | | (1-y)(5y+2)=0 | | x+4.9=6.86 | | 8w=129 |

Equations solver categories