3/2k2-16=80

Simple and best practice solution for 3/2k2-16=80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2k2-16=80 equation:



3/2k^2-16=80
We move all terms to the left:
3/2k^2-16-(80)=0
Domain of the equation: 2k^2!=0
k^2!=0/2
k^2!=√0
k!=0
k∈R
We add all the numbers together, and all the variables
3/2k^2-96=0
We multiply all the terms by the denominator
-96*2k^2+3=0
Wy multiply elements
-192k^2+3=0
a = -192; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-192)·3
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2304}=48$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48}{2*-192}=\frac{-48}{-384} =1/8 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48}{2*-192}=\frac{48}{-384} =-1/8 $

See similar equations:

| x2+7x+27=0, | | 60+131+75+x=360 | | 61+38+53+x=360 | | 16/36=12/z | | 3⁄2c+23/1=38/1 | | 47+104+104+x=360 | | 4-(-2+3x)=-2+(=x-1) | | 100=-50x+750 | | 78=-2(m+3)+m+ | | 1+j=15 | | 4y−9=3y−7 | | 4(x−2)2=(x–8)2 | | -5=4-n | | 5(3^t)=20. | | 82+134+112+x=360 | | 100n-14=100n-(14) | | 53^t=20. | | 2.8x^2-11.4x+7.6=0 | | 22-6x=10 | | 6(x+2=72 | | 70+148+66+x=360 | | –4r−8=–2r+10 | | 20x2-55=0 | | .9x=7 | | c+11=24 | | 0=-2x+22 | | 20=-2x+22 | | 20x2-3x-55=0 | | 20x2-6x-55=0 | | 20x2-6x-73=0 | | 64=m/6+58 | | –6x−4x+7x+13x=10 |

Equations solver categories