If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2b+b+(2b-90)+(b+45)+90=540
We move all terms to the left:
3/2b+b+(2b-90)+(b+45)+90-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(2b-90)+(b+45)-450=0
We get rid of parentheses
b+3/2b+2b+b-90+45-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 12x3=5+4 | | 51x=53 | | (-2x/7)-x=4-8x | | -5(1-5x)+5(-8x-2)=-4×-8x | | 3(x+2)+5=6x | | 6m^2+18m-5m-15=0 | | 6m^2+18m-5m-156m=0 | | 10j−10=6j+10 | | (6a+1)=(5a-3) | | 8t+5=17 | | -8c-9=8-7-6c | | 3^2x-12(3^x)+27=0 | | 8(4x-1)-12x=-11(2x-6) | | 12*n=32 | | F(x)=2(-2)^2+4(-2)-7 | | Y2+4y-96=0 | | 2x-22=-2(x+3) | | 36x-69+4x=28x+316 | | 2.85a-7=12.87a+2 | | 5(4(3(2+x)))=60 | | -9(w-1)=3w-3 | | 2(a+3)=3(a-15) | | 9x-24=3×-36 | | -7y-38=2(y+8) | | 6y-y=28 | | Z(a+3)=3(a-15) | | -6+-6=f | | -16f=12-18f | | 16f=12-18f | | 0.16y+0.17=90000 | | 12(3x-5)+4x=28x-4(6×+79) | | c+-6=7c-5 |