If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2b+(b+45)+b+(2b-90)=450
We move all terms to the left:
3/2b+(b+45)+b+(2b-90)-(450)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(b+45)+(2b-90)-450=0
We get rid of parentheses
b+3/2b+b+2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| (4x+6)°=(6x-10)° | | 2(b-84)=14 | | 4(s-83)=12 | | |-2x|=8 | | 4x+6+10x=90 | | -4g+3=15 | | 5(v+4)=95 | | -7a-6=15 | | x+20-9x+4=-8 | | 100=3w+22 | | 1/3(9m+12)=m-12 | | 3x+12-5x-1=17 | | 2x+3+3x+4=-43 | | 4(p+9)=68 | | -40+8y=-18+6y | | 4m+12=20 | | 12.9h-3=9-9.5h | | 1=16-3k | | 41-2x=19+9x | | -7x+18=-3x+22 | | -6n+5-8=15 | | 2x+9-6x/3=12 | | 5x+8=12x-34 | | -15-3x=8x+7 | | 1746x+5436-647=3375 | | 3x+2=8•3x | | 2(3x+6)=3(2x+1) | | -123x+16-27x+297=19x-194 | | 8(k+5)-3=5k | | x+9+3x+3=9x+5 | | -19=4(9b+5) | | 2x+16+5X+80=180 |