If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2(2x+4)=1/4(4-8x)
We move all terms to the left:
3/2(2x+4)-(1/4(4-8x))=0
Domain of the equation: 2(2x+4)!=0
x∈R
Domain of the equation: 4(4-8x))!=0We add all the numbers together, and all the variables
x∈R
3/2(2x+4)-(1/4(-8x+4))=0
We calculate fractions
(12x(-)/(2(2x+4)*4(-8x+4)))+(-2x2/(2(2x+4)*4(-8x+4)))=0
We calculate terms in parentheses: +(12x(-)/(2(2x+4)*4(-8x+4))), so:
12x(-)/(2(2x+4)*4(-8x+4))
We add all the numbers together, and all the variables
12x0/(2(2x+4)*4(-8x+4))
We multiply all the terms by the denominator
12x0
We add all the numbers together, and all the variables
12x
Back to the equation:
+(12x)
We calculate terms in parentheses: +(-2x2/(2(2x+4)*4(-8x+4))), so:We get rid of parentheses
-2x2/(2(2x+4)*4(-8x+4))
We multiply all the terms by the denominator
-2x2
We add all the numbers together, and all the variables
-2x^2
Back to the equation:
+(-2x^2)
-2x^2+12x=0
a = -2; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-2)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-2}=\frac{-24}{-4} =+6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-2}=\frac{0}{-4} =0 $
| 66=12x+18 | | P=-0.01x2+5000x-25000 | | 2x-1=x+1÷2x | | X+5=36÷x | | X+16=3y-4 | | 2(v-4)-10=-2(-1 | | 4x2+9x-69=0 | | -x+7,6=2x+4,6 | | 4x(6-8)=24 | | -x+9=-4x+3 | | 4x3=6 | | w^2-14=0 | | w^2=14w | | 2^x^2=3x | | 5a^2+8a-60=0 | | 2(5x+3)=4x-18 | | 3c/c=63 | | |2x-17|=-4 | | 7w=5w+9 | | 3x^2+0+8=0 | | z2+2z+4=0 | | z3+2z+4=0 | | x+(0.101787x/0.01885)-(25)=0 | | 4x^2-2=-7x | | ?x54=9 | | 10p+24=56 | | -16^x2+16x+5=0 | | 2.5=2x | | 48=9b-b | | -1/8m=3/4 | | -1/4m=3/4 | | 2x+4x+-2=20 |