If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+9x-69=0
a = 4; b = 9; c = -69;
Δ = b2-4ac
Δ = 92-4·4·(-69)
Δ = 1185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{1185}}{2*4}=\frac{-9-\sqrt{1185}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{1185}}{2*4}=\frac{-9+\sqrt{1185}}{8} $
| -x+7,6=2x+4,6 | | 4x(6-8)=24 | | -x+9=-4x+3 | | 4x3=6 | | w^2-14=0 | | w^2=14w | | 2^x^2=3x | | 5a^2+8a-60=0 | | 2(5x+3)=4x-18 | | 3c/c=63 | | |2x-17|=-4 | | 7w=5w+9 | | 3x^2+0+8=0 | | z2+2z+4=0 | | z3+2z+4=0 | | x+(0.101787x/0.01885)-(25)=0 | | 4x^2-2=-7x | | ?x54=9 | | 10p+24=56 | | -16^x2+16x+5=0 | | 2.5=2x | | 48=9b-b | | -1/8m=3/4 | | -1/4m=3/4 | | 2x+4x+-2=20 | | 9(x-1)+(x-4)=16 | | 9X(x-1)+(x-4)=16 | | s+65.35-37.50=127.75 | | 1.5(b+2)=b(2b-9) | | 5/x=30/40 | | Z^2+16z+51=0 | | 6=2w+3÷5 |