3/10x+12=2/5x-28

Simple and best practice solution for 3/10x+12=2/5x-28 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/10x+12=2/5x-28 equation:



3/10x+12=2/5x-28
We move all terms to the left:
3/10x+12-(2/5x-28)=0
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
Domain of the equation: 5x-28)!=0
x∈R
We get rid of parentheses
3/10x-2/5x+28+12=0
We calculate fractions
15x/50x^2+(-20x)/50x^2+28+12=0
We add all the numbers together, and all the variables
15x/50x^2+(-20x)/50x^2+40=0
We multiply all the terms by the denominator
15x+(-20x)+40*50x^2=0
Wy multiply elements
2000x^2+15x+(-20x)=0
We get rid of parentheses
2000x^2+15x-20x=0
We add all the numbers together, and all the variables
2000x^2-5x=0
a = 2000; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·2000·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*2000}=\frac{0}{4000} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*2000}=\frac{10}{4000} =1/400 $

See similar equations:

| -68+30k=10(3k-7)=2 | | 30+7x+3x=180 | | 1=3a-4/2a+6 | | -3z+(-6z)+7=-3-5z | | -7g=-5=36 | | -2.5(x-7)+4=3.2(2x-5) | | 55x+25=30 | | 200*x=1000000 | | 8x-3=32x+2 | | 3x+5=0.5- | | x*1.5=10.5 | | Y=2.4x+18 | | 3x+8/2=-8 | | 3x+8=-8/2 | | 6b+-3b=4 | | 3x+20/4=20 | | 2(x+x-3)=26 | | -x.4+13=9 | | 12+3x=96 | | 3.4=-7v+14.6 | | -b2+10b+21=0 | | 3/0.08-x=5/x | | 5=0.333*(12+x) | | 9x-9/2=7x-7/8+29 | | t/2-1=4 | | 3/t-1=4 | | 3x+2x=+9 | | 26x2-208x+390=0 | | 28x2+84x+56=0 | | 5x2-9x=7 | | 2x2-9x=12 | | 4x2-3x-12=0 |

Equations solver categories