3+(x-7)(3x-2)=(x+2)(x-2)-(x+3)(x-3)-3x

Simple and best practice solution for 3+(x-7)(3x-2)=(x+2)(x-2)-(x+3)(x-3)-3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3+(x-7)(3x-2)=(x+2)(x-2)-(x+3)(x-3)-3x equation:



3+(x-7)(3x-2)=(x+2)(x-2)-(x+3)(x-3)-3x
We move all terms to the left:
3+(x-7)(3x-2)-((x+2)(x-2)-(x+3)(x-3)-3x)=0
We use the square of the difference formula
x^2+(x-7)(3x-2)+4+3=0
We multiply parentheses ..
x^2+(+3x^2-2x-21x+14)+4+3=0
We add all the numbers together, and all the variables
x^2+(+3x^2-2x-21x+14)+7=0
We get rid of parentheses
x^2+3x^2-2x-21x+14+7=0
We add all the numbers together, and all the variables
4x^2-23x+21=0
a = 4; b = -23; c = +21;
Δ = b2-4ac
Δ = -232-4·4·21
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{193}}{2*4}=\frac{23-\sqrt{193}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{193}}{2*4}=\frac{23+\sqrt{193}}{8} $

See similar equations:

| 2x+0,64=8,84 | | x3=0.33 | | 13x-20=2÷3 | | X=4/5(x+40) | | 12x-20÷13x-20=2÷3 | | x+x+x+54=135 | | 2x^2–6x–20=0 | | 2^2–6x–20=0 | | x(4x+18)=166 | | (2x+5)x(2x+9)=221 | | m2=144 | | x(x-2)(x-4)(x-6)=20 | | x=4/2±√((-4/2)^2–13) | | 1+4x=4+6x | | X^-2+3x^-1+2=0 | | a/11=33 | | 0.2(x-0.3)=4x | | 12x-4(-x-10)=40 | | 2x+55=-3x-20 | | b÷-6=18 | | 3x-27=5x-53 | | a-233=13 | | 12+p=67 | | -8-9x=-3-5x | | 6-2x=7x-5 | | x2018-6x2017-4x-1=0 | | 7u=4u+21 | | R=8t^2+5t-6 | | 6+6y=8y | | x—5=9 | | 2/3x-1/6=31/6 | | 2x-15=35-3x |

Equations solver categories