3(x2-2)=2(x+3)

Simple and best practice solution for 3(x2-2)=2(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x2-2)=2(x+3) equation:



3(x2-2)=2(x+3)
We move all terms to the left:
3(x2-2)-(2(x+3))=0
We add all the numbers together, and all the variables
3(+x^2-2)-(2(x+3))=0
We multiply parentheses
3x^2-(2(x+3))-6=0
We calculate terms in parentheses: -(2(x+3)), so:
2(x+3)
We multiply parentheses
2x+6
Back to the equation:
-(2x+6)
We get rid of parentheses
3x^2-2x-6-6=0
We add all the numbers together, and all the variables
3x^2-2x-12=0
a = 3; b = -2; c = -12;
Δ = b2-4ac
Δ = -22-4·3·(-12)
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{37}}{2*3}=\frac{2-2\sqrt{37}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{37}}{2*3}=\frac{2+2\sqrt{37}}{6} $

See similar equations:

| 3x=90-(x+10) | | 6(x+3)−3=39x= | | -51-4x=4x-19 | | 3(-10m-3)+6=75 | | 9t-3t=42 | | -4/5x=-32 | | 27=6z+3 | | 31.25-x+0.0625x=0.5 | | 2x+x+10=5x | | 26+3x=59 | | 9(4x-3)=3(6-2x) | | 4y+24+2y=3y+54 | | 7(2+m)=14 | | -7(5n+4)=147 | | x14+2.75=44.03 | | (X)=3x^2 | | 5(1-3x)+1=3x | | -12z=-13z+20 | | -y+21=42 | | (12x–3)=(5x+12)=(3x+13) | | 4-8x=3x+37 | | 5x+-3+21+-1X=0 | | -6+7(3b+2)=176 | | 17x+7-16x=-2 | | 1+-y=11 | | 9d+4=13 | | 25r-6r=36 | | (12x–3)=(5x+12)=3x+13 | | 55-11j=55 | | 14v=-98 | | a/2+2(-10)=9 | | 1/5=x-2.5+0.8x |

Equations solver categories