3(x+2)*4(2x)=6(x-7)

Simple and best practice solution for 3(x+2)*4(2x)=6(x-7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x+2)*4(2x)=6(x-7) equation:



3(x+2)*4(2x)=6(x-7)
We move all terms to the left:
3(x+2)*4(2x)-(6(x-7))=0
We multiply parentheses
126x^2+252x-(6(x-7))=0
We calculate terms in parentheses: -(6(x-7)), so:
6(x-7)
We multiply parentheses
6x-42
Back to the equation:
-(6x-42)
We get rid of parentheses
126x^2+252x-6x+42=0
We add all the numbers together, and all the variables
126x^2+246x+42=0
a = 126; b = 246; c = +42;
Δ = b2-4ac
Δ = 2462-4·126·42
Δ = 39348
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{39348}=\sqrt{36*1093}=\sqrt{36}*\sqrt{1093}=6\sqrt{1093}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(246)-6\sqrt{1093}}{2*126}=\frac{-246-6\sqrt{1093}}{252} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(246)+6\sqrt{1093}}{2*126}=\frac{-246+6\sqrt{1093}}{252} $

See similar equations:

| 4x-7x-2x=15 | | 31+42=n | | u+13=68 | | y=9+35 | | 3(x+3=39 | | 52+6m=2000 | | 8x+3​=8+7x | | 20=12.70+0.14t | | (−21x+168)−(3)=7 | | −21x+168)−(3)=1 | | 2+6p=20 | | 16=4(x=+1) | | 15m^2+29m+12=0 | | 1/8x+9=13 | | 34=6(v+7)-8v | | x-1/2-2x+1/3=-5/6 | | -6(9x+5)3x+4x=-408-x | | 3x-8+4x=20 | | 28=10+8+c | | x+32+5=2x | | 2x=−50 | | 4/5x+2/3+1/3x=x | | -38=-8y | | 30+0.05n=40 | | 10/20=x+2/x+6 | | 4y-y=2y | | 4x+3=2-6x | | 4.5+2.25x=100 | | 2(4x-11)=5x-7 | | 2r−7=r | | -6n−10=-n | | -9f=-10f−3 |

Equations solver categories