3(x+1)(x+2)=x-(2x-3)(x+4)

Simple and best practice solution for 3(x+1)(x+2)=x-(2x-3)(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x+1)(x+2)=x-(2x-3)(x+4) equation:



3(x+1)(x+2)=x-(2x-3)(x+4)
We move all terms to the left:
3(x+1)(x+2)-(x-(2x-3)(x+4))=0
We multiply parentheses ..
3(+x^2+2x+x+2)-(x-(2x-3)(x+4))=0
We calculate terms in parentheses: -(x-(2x-3)(x+4)), so:
x-(2x-3)(x+4)
We multiply parentheses ..
-(+2x^2+8x-3x-12)+x
We get rid of parentheses
-2x^2-8x+3x+x+12
We add all the numbers together, and all the variables
-2x^2-4x+12
Back to the equation:
-(-2x^2-4x+12)
We multiply parentheses
3x^2-(-2x^2-4x+12)+6x+3x+6=0
We get rid of parentheses
3x^2+2x^2+4x+6x+3x-12+6=0
We add all the numbers together, and all the variables
5x^2+13x-6=0
a = 5; b = 13; c = -6;
Δ = b2-4ac
Δ = 132-4·5·(-6)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-17}{2*5}=\frac{-30}{10} =-3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+17}{2*5}=\frac{4}{10} =2/5 $

See similar equations:

| 4(x−2)=34 | | 11x+2-10x=2(4x+1)-7x | | -2(1+7r)+4=-110 | | 123-u=252 | | 0.2n=0.4 | | 4x+8=-24x+8 | | 3(x1)(x2)=x-(2x-3)(x4) | | 5x-3(x-2)=-7+5x-11 | | x2+-2x+1=25 | | y=-3*1-9 | | 2(z+24)=5z | | -5=3r-6+4 | | 93=-7+2(1-7p) | | 0=4K+2k | | 6x-10+10x+14=180 | | y=-3*0-9 | | -13g=-14-12g | | -82=9x+251 | | 4(3x-2)=6(x-3)-8 | | 3(4-x)=13-3x | | 9.5=7.8-x | | -2(2x+5)=-10-4x | | 18=9x10 | | 5x(2x+6)=48 | | 78+22x+2x-6=180 | | b–3b+8=18 | | 17=b-5 | | N-7/n=4 | | 250=73-v | | -12+k=80 | | 4(x-6)+6=6-8 | | 1/4(12+8x)=4 |

Equations solver categories