3(n+4)=1/25n+4

Simple and best practice solution for 3(n+4)=1/25n+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(n+4)=1/25n+4 equation:



3(n+4)=1/25n+4
We move all terms to the left:
3(n+4)-(1/25n+4)=0
Domain of the equation: 25n+4)!=0
n∈R
We multiply parentheses
3n-(1/25n+4)+12=0
We get rid of parentheses
3n-1/25n-4+12=0
We multiply all the terms by the denominator
3n*25n-4*25n+12*25n-1=0
Wy multiply elements
75n^2-100n+300n-1=0
We add all the numbers together, and all the variables
75n^2+200n-1=0
a = 75; b = 200; c = -1;
Δ = b2-4ac
Δ = 2002-4·75·(-1)
Δ = 40300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40300}=\sqrt{100*403}=\sqrt{100}*\sqrt{403}=10\sqrt{403}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-10\sqrt{403}}{2*75}=\frac{-200-10\sqrt{403}}{150} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+10\sqrt{403}}{2*75}=\frac{-200+10\sqrt{403}}{150} $

See similar equations:

| 5k-20k=-15 | | X(3y)=30 | | 8x-19=-12x+16 | | 3(2x-6)=0.5(4x+12) | | 4(×+7)=4x+28 | | 6x+60=128 | | 10s+3s-10s-3=18 | | 2(z+10)-4z=28 | | 3(2x-6)=1/2(4x+12) | | 0.23x+1.47=0.37x–1.05 | | 7x+1/7x+5=3x+1/5x+1 | | 7w+6w+8w-12=9 | | 15=x*2*6 | | z^2+7z+31=0 | | 5+4(x+1)=3x+2 | | 6x+5=x+2(x-5) | | -8u+4=-7u | | 6x+32=2×-8 | | m-28/6-6m-8/7=2 | | 2x+23=1x+21 | | 6x=61 | | -1/3(12a+18)=5(a-3)-6a | | 3.6c+6=-2+2c | | 1/x-3+3/x+1=1 | | -5(x+2)=2(x+9) | | 16(4-3m)=96(-m2÷1) | | -10m+4=-10m-3 | | 7m/49=2 | | -4/5+1/3v=-1/2 | | -12-8y=-6y+14 | | 6k-16=6k-28 | | 23-2x=3-2(5x-2) |

Equations solver categories