3(m+2)+3=m-2(2m-1)

Simple and best practice solution for 3(m+2)+3=m-2(2m-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(m+2)+3=m-2(2m-1) equation:


Simplifying
3(m + 2) + 3 = m + -2(2m + -1)

Reorder the terms:
3(2 + m) + 3 = m + -2(2m + -1)
(2 * 3 + m * 3) + 3 = m + -2(2m + -1)
(6 + 3m) + 3 = m + -2(2m + -1)

Reorder the terms:
6 + 3 + 3m = m + -2(2m + -1)

Combine like terms: 6 + 3 = 9
9 + 3m = m + -2(2m + -1)

Reorder the terms:
9 + 3m = m + -2(-1 + 2m)
9 + 3m = m + (-1 * -2 + 2m * -2)
9 + 3m = m + (2 + -4m)

Reorder the terms:
9 + 3m = 2 + m + -4m

Combine like terms: m + -4m = -3m
9 + 3m = 2 + -3m

Solving
9 + 3m = 2 + -3m

Solving for variable 'm'.

Move all terms containing m to the left, all other terms to the right.

Add '3m' to each side of the equation.
9 + 3m + 3m = 2 + -3m + 3m

Combine like terms: 3m + 3m = 6m
9 + 6m = 2 + -3m + 3m

Combine like terms: -3m + 3m = 0
9 + 6m = 2 + 0
9 + 6m = 2

Add '-9' to each side of the equation.
9 + -9 + 6m = 2 + -9

Combine like terms: 9 + -9 = 0
0 + 6m = 2 + -9
6m = 2 + -9

Combine like terms: 2 + -9 = -7
6m = -7

Divide each side by '6'.
m = -1.166666667

Simplifying
m = -1.166666667

See similar equations:

| 5x-3y+13w-2y-6w+9x= | | -(x-3)=4x+13 | | 4w+10y+10x+4x-15y+4w= | | -2(a+4)=3(2a+1) | | 4(2z-3)=5(z+12) | | 12+3x=-6+13x | | 3w+9x-13y+4w+5x+8y= | | x+iy=5 | | .75x+.5x=26 | | 4x+5=7x+14 | | Xy-2x=9 | | 3(2x+7)=42 | | Ln(3x)=ln(x-2) | | 24overx=5 | | 1.8x^2= | | 3x-5(x-5)=-6+5x-18 | | 5x+45=10(x+1) | | 5x^2-8y^2=12 | | Y^2+5x-15=0 | | 0.2x+0.9y=3 | | -31-4x=-5+5(1+5x) | | 6x^3+x^2-26x-21=0 | | -31-4x=-5+5(1+5) | | -3x-2=-x-6 | | (3ab)(-2a^2b^3)(a+b)=0 | | 35x+410=110-(12x-18) | | 4cot^2x-3cotx=0 | | 2x*x-13x-45=0 | | -0.8m^2n(15m+20n)=0 | | 11m+2n-6m+10m= | | 3(x-7)=2(x+9) | | 18p+15q+p-3q-6p= |

Equations solver categories