3(8-12n)+8(3-3n)=n+5-9

Simple and best practice solution for 3(8-12n)+8(3-3n)=n+5-9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(8-12n)+8(3-3n)=n+5-9 equation:


Simplifying
3(8 + -12n) + 8(3 + -3n) = n + 5 + -9
(8 * 3 + -12n * 3) + 8(3 + -3n) = n + 5 + -9
(24 + -36n) + 8(3 + -3n) = n + 5 + -9
24 + -36n + (3 * 8 + -3n * 8) = n + 5 + -9
24 + -36n + (24 + -24n) = n + 5 + -9

Reorder the terms:
24 + 24 + -36n + -24n = n + 5 + -9

Combine like terms: 24 + 24 = 48
48 + -36n + -24n = n + 5 + -9

Combine like terms: -36n + -24n = -60n
48 + -60n = n + 5 + -9

Reorder the terms:
48 + -60n = 5 + -9 + n

Combine like terms: 5 + -9 = -4
48 + -60n = -4 + n

Solving
48 + -60n = -4 + n

Solving for variable 'n'.

Move all terms containing n to the left, all other terms to the right.

Add '-1n' to each side of the equation.
48 + -60n + -1n = -4 + n + -1n

Combine like terms: -60n + -1n = -61n
48 + -61n = -4 + n + -1n

Combine like terms: n + -1n = 0
48 + -61n = -4 + 0
48 + -61n = -4

Add '-48' to each side of the equation.
48 + -48 + -61n = -4 + -48

Combine like terms: 48 + -48 = 0
0 + -61n = -4 + -48
-61n = -4 + -48

Combine like terms: -4 + -48 = -52
-61n = -52

Divide each side by '-61'.
n = 0.8524590164

Simplifying
n = 0.8524590164

See similar equations:

| (12+3i)+(2-5i)= | | Y^2-x^2=9 | | 3=x-5x | | 4(y+2)-7=-14 | | 6x+6=27-4x | | u=5(2n+30)+7(n+1) | | 2x+7=1(3-2x) | | 9=63 | | 20x+20=2x+38 | | 1/3(9b-1)=b-1 | | d-2f=g | | 154=.3x | | (8-z)(4z-3)=0 | | X+(.087X)=298.93 | | x+x+x=156 | | X(.087X)=298.93 | | 5+6-(3-4)=x | | y=5/4x45 | | p-1/4×3-5/6 | | 7/2v-2/5=-3/5v-3 | | (V-1)(3v-3)=0 | | u=6(2n+35)+7(n+1) | | 11x+35=2x+15 | | 3x^2+4-12x=0 | | 4x-2(x+3)=2x+6 | | 18/24=x/100 | | 9x=7-4y | | 9(2x-3)=29 | | 75*m=80-m/5 | | b(m)=80-m/5 | | r/q-a/q=1 | | 8=-12+6x |

Equations solver categories