If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(3x-3)+2x(x-5)=5(x-5)(x-3)
We move all terms to the left:
3(3x-3)+2x(x-5)-(5(x-5)(x-3))=0
We multiply parentheses
2x^2+9x-10x-(5(x-5)(x-3))-9=0
We multiply parentheses ..
2x^2-(5(+x^2-3x-5x+15))+9x-10x-9=0
We calculate terms in parentheses: -(5(+x^2-3x-5x+15)), so:We add all the numbers together, and all the variables
5(+x^2-3x-5x+15)
We multiply parentheses
5x^2-15x-25x+75
We add all the numbers together, and all the variables
5x^2-40x+75
Back to the equation:
-(5x^2-40x+75)
2x^2-1x-(5x^2-40x+75)-9=0
We get rid of parentheses
2x^2-5x^2-1x+40x-75-9=0
We add all the numbers together, and all the variables
-3x^2+39x-84=0
a = -3; b = 39; c = -84;
Δ = b2-4ac
Δ = 392-4·(-3)·(-84)
Δ = 513
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{513}=\sqrt{9*57}=\sqrt{9}*\sqrt{57}=3\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-3\sqrt{57}}{2*-3}=\frac{-39-3\sqrt{57}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+3\sqrt{57}}{2*-3}=\frac{-39+3\sqrt{57}}{-6} $
| 4x+15=x+36 | | 9.2x+13.29=-10.8x+29.87 | | x+5x=256 | | 9.2x+30.35=-10.8x+29.87 | | (3x+9)^1/2=9 | | 12x-5=4x35 | | 3(4z-1)-4(z+5)=5(z+1) | | 50+x+(x+6)+(x+10)=360 | | 5x-3+2(x+24)=180 | | 21w+35=-40 | | 4+6(x-5)=6-4(x-7) | | 196-4y^2=0 | | 3x+5=-1.2x+2 | | 3/5x-8/15x=1/10 | | 95+80+100+5x=540 | | 9x+3=5x=15 | | 5x+5=11x-49x= | | 95+80+100+5x=360 | | -16t-8=-72 | | -1=9(11x+7)+16x | | (.25x)+x=3000 | | (10x-8)=(4x+28) | | 9+8x=5x=-2 | | 62=(9/5)c+32 | | 3(1/2y+5)=4(3/7y-8) | | 1/4x-2=-6+5/12 | | 5f-50=-35 | | -10s-40=-102 | | 3=3/4-c | | 2x/9=13/6 | | 6t+12=-6 | | 5x/3-7x/12=13/6 |