3(2x-1)=9(3x-5)x=

Simple and best practice solution for 3(2x-1)=9(3x-5)x= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2x-1)=9(3x-5)x= equation:



3(2x-1)=9(3x-5)x=
We move all terms to the left:
3(2x-1)-(9(3x-5)x)=0
We multiply parentheses
6x-(9(3x-5)x)-3=0
We calculate terms in parentheses: -(9(3x-5)x), so:
9(3x-5)x
We multiply parentheses
27x^2-45x
Back to the equation:
-(27x^2-45x)
We get rid of parentheses
-27x^2+6x+45x-3=0
We add all the numbers together, and all the variables
-27x^2+51x-3=0
a = -27; b = 51; c = -3;
Δ = b2-4ac
Δ = 512-4·(-27)·(-3)
Δ = 2277
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2277}=\sqrt{9*253}=\sqrt{9}*\sqrt{253}=3\sqrt{253}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-3\sqrt{253}}{2*-27}=\frac{-51-3\sqrt{253}}{-54} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+3\sqrt{253}}{2*-27}=\frac{-51+3\sqrt{253}}{-54} $

See similar equations:

| -7y-2-4y=19-8y | | 3x-5=3=3x+12 | | –7y−2−4y=19−8y | | 3x−3=  x−19 | | 3-13w=19-12w | | 6+13,89d=10+12,89d | | 23=1x+3+1x+2x | | |3x-5/5|=1 | | −3t2−15t+17=-6t^2 | | 4+7k=2k+4 | | x+(x*0.2364)=1499977 | | 9v-1=4v+6v-10 | | 2n-8=n-2 | | 75+7n=100+2n | | 7x+9=-9x-23 | | 9v−1=4v+6v−10 | | -u+10+17u=-5+15u | | .3927(33+2)/3.1416=x | | 6w-36=8(w-5) | | 4p=80 | | 10+0,20m=30+0,10m | | -5(-1-5x)+5(-8x-6)=-24x-8x | | 2p=30 | | 25a-28=-9(2-12a) | | −8x=56 | | 2(3x+1)-4x=20 | | x+16=3x+15 | | 15*7x=29 | | 38=16-2n+15 | | Y+9=1(x+9) | | 5(y+2)=3(y-1) | | n+3/5=4-n/2 |

Equations solver categories