3(2)+7(2)=c(2)

Simple and best practice solution for 3(2)+7(2)=c(2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2)+7(2)=c(2) equation:



3(2)+7(2)=c(2)
We move all terms to the left:
3(2)+7(2)-(c(2))=0
determiningTheFunctionDomain -c2+32+72=0
We add all the numbers together, and all the variables
-1c^2+104=0
a = -1; b = 0; c = +104;
Δ = b2-4ac
Δ = 02-4·(-1)·104
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{26}}{2*-1}=\frac{0-4\sqrt{26}}{-2} =-\frac{4\sqrt{26}}{-2} =-\frac{2\sqrt{26}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{26}}{2*-1}=\frac{0+4\sqrt{26}}{-2} =\frac{4\sqrt{26}}{-2} =\frac{2\sqrt{26}}{-1} $

See similar equations:

| v+54=5 | | 0.45=9/x | | -165-5x=9x+115 | | -6(8x+11)=-3(16x-22) | | 54=13u-4u | | 2(3-5x)=2(4+1) | | (4y+6)+(7y-7)+(7y-7)=180 | | 4y+6+7y-7+7y-7=180 | | -37+14x=12x+19 | | (x+12)*(x+12)=x*x+20*20 | | 12x-3-5x-10=6x-4 | | x-92=24x | | 5n=720 | | 3(4x-1)–5(x-2)=2(3x-4) | | (7x-8)^2=-25 | | -115+5x=45-3x | | (x+12)^2=x^2+20^2 | | 14c=826 | | 20y=780 | | 7(5x-1)=27 | | 8u=88 | | 5x-4=3x+16. | | 49—7m=14 | | 4.5x+8-2.5=-20 | | x=4x^2+16x+9 | | 3z=84 | | 28-2g=8 | | 5/4x-12=-1/2x+4 | | 15=4h | | 8x-9-12x+5=(8x+-12x)+-9+5 | | a-2.5=8 | | (3y+53)=(7y+55) |

Equations solver categories