3(1/5+x)=2(x+42)

Simple and best practice solution for 3(1/5+x)=2(x+42) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(1/5+x)=2(x+42) equation:



3(1/5+x)=2(x+42)
We move all terms to the left:
3(1/5+x)-(2(x+42))=0
Domain of the equation: 5+x)!=0
We move all terms containing x to the left, all other terms to the right
x)!=-5
x!=-5/1
x!=-5
x∈R
We add all the numbers together, and all the variables
3(+x+1/5)-(2(x+42))=0
We multiply parentheses
3x-(2(x+42))+1/5*3=0
We multiply all the terms by the denominator
3x*5*3-((2(x+42)))*5*3+1=0
Wy multiply elements
45x*3-((2(x+42)))*5*3+1=0
Wy multiply elements
135x-((2(x+42)))*5*3+1=0
We move all terms containing x to the left, all other terms to the right
135x-((2(x+42)))*5*3=-1

See similar equations:

| 3.2+a=8.7 | | (-4x-5)²=2x | | 7x-5=9x-8, | | 6k-10=9k+12 | | 1/4(x-1/2)=11/8 | | 5x/12+16=x | | 2/7y-3=3/9y-5 | | 500/v2=0.971/1,50 | | x+x*1,62=30.000 | | x+x1,62=30.000 | | -2+2x+150=180 | | 2^2x+2(10^x+1)-10(2^3x*5^x=1200 | | 10^x+10^1-x=11 | | 10^x+10^x-1=11 | | (3^2x)+(3^x+1)=10 | | 3^2x+3^x+1=10 | | 11x^2+13x-17=0 | | 8x–4=24+3(2x–10) | | 5f+4=34 | | 9*x*9=18 | | 75/x-3=1,5 | | 5x^2-18x+180=0 | | -6b+-b+11b-b=12 | | Y^2-34y+273=0 | | 1/8(x-8)=-4 | | 13b-7b=6 | | 2u+6u+2u=20 | | 4j-3j=14 | | 6m-5m=20 | | 3w-2w=11 | | (x–2)²–(x–1)²=-2x+1 | | 2y+60=8y |

Equations solver categories