2/7y-3=3/9y-5

Simple and best practice solution for 2/7y-3=3/9y-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/7y-3=3/9y-5 equation:



2/7y-3=3/9y-5
We move all terms to the left:
2/7y-3-(3/9y-5)=0
Domain of the equation: 7y!=0
y!=0/7
y!=0
y∈R
Domain of the equation: 9y-5)!=0
y∈R
We get rid of parentheses
2/7y-3/9y+5-3=0
We calculate fractions
18y/63y^2+(-21y)/63y^2+5-3=0
We add all the numbers together, and all the variables
18y/63y^2+(-21y)/63y^2+2=0
We multiply all the terms by the denominator
18y+(-21y)+2*63y^2=0
Wy multiply elements
126y^2+18y+(-21y)=0
We get rid of parentheses
126y^2+18y-21y=0
We add all the numbers together, and all the variables
126y^2-3y=0
a = 126; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·126·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*126}=\frac{0}{252} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*126}=\frac{6}{252} =1/42 $

See similar equations:

| 500/v2=0.971/1,50 | | x+x*1,62=30.000 | | x+x1,62=30.000 | | -2+2x+150=180 | | 2^2x+2(10^x+1)-10(2^3x*5^x=1200 | | 10^x+10^1-x=11 | | 10^x+10^x-1=11 | | (3^2x)+(3^x+1)=10 | | 3^2x+3^x+1=10 | | 11x^2+13x-17=0 | | 8x–4=24+3(2x–10) | | 5f+4=34 | | 9*x*9=18 | | 75/x-3=1,5 | | 5x^2-18x+180=0 | | -6b+-b+11b-b=12 | | Y^2-34y+273=0 | | 1/8(x-8)=-4 | | 13b-7b=6 | | 2u+6u+2u=20 | | 4j-3j=14 | | 6m-5m=20 | | 3w-2w=11 | | (x–2)²–(x–1)²=-2x+1 | | 2y+60=8y | | (x-1)0.75=64 | | 3x-15=20x+12 | | (6x*6x)+2x/2x=0 | | 7x+23=57 | | )2(6)105a−= | | b/6-3=5 | | 6x+(6+x)=2 |

Equations solver categories