If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2=32
We move all terms to the left:
2y^2-(32)=0
a = 2; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·2·(-32)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*2}=\frac{-16}{4} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*2}=\frac{16}{4} =4 $
| 5x=6=36 | | 4x-12=5x=10 | | 2(10x=3)-x=44 | | 10x-5=2x-3 | | 3x-12=5x=10 | | 3b+14=^18-5b | | (3k-2)(2k-1)=k(6k+5)-3 | | 6c^-3c=0 | | 1/3x^2-44=0 | | 11) 40+c=9+2c | | 3•(5-x)=15 | | 5x-(x-1)+2=2x+3+2x | | 0,5x+1=x-5 | | 3b+14=-18^5b | | 4x(2x-9)=-2(5x-6) | | 0x5x+1=x-5 | | 2(5x+10)=3(4x+6)+2 | | -6h+14=-8h-12 | | -2x+8+x+1=-x | | 144=3(48-1y)+3y | | 20(15m-10)=10(20+10m) | | 4b+7=-26-7b | | 5=1-2x= | | −4v+7=-10v+37 | | x+6=-3x-14 | | 36-4b=6-7b | | -3=5-3c+4 | | 3b+14=-18-5b | | 3/5x+1/4=51 | | x+3=21-2x | | 3(x-2)/4+2=6+2x-14+6 | | -16+2x=-32-3x |