2y2=(25-y)2

Simple and best practice solution for 2y2=(25-y)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2y2=(25-y)2 equation:



2y^2=(25-y)2
We move all terms to the left:
2y^2-((25-y)2)=0
We add all the numbers together, and all the variables
2y^2-((-1y+25)2)=0
We calculate terms in parentheses: -((-1y+25)2), so:
(-1y+25)2
We multiply parentheses
-2y+50
Back to the equation:
-(-2y+50)
We get rid of parentheses
2y^2+2y-50=0
a = 2; b = 2; c = -50;
Δ = b2-4ac
Δ = 22-4·2·(-50)
Δ = 404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{404}=\sqrt{4*101}=\sqrt{4}*\sqrt{101}=2\sqrt{101}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{101}}{2*2}=\frac{-2-2\sqrt{101}}{4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{101}}{2*2}=\frac{-2+2\sqrt{101}}{4} $

See similar equations:

| 5x+15=110+7x-1 | | (5x=23)=(8x-49)=20 | | (14x=4)=55 | | 8x-28=10x+6 | | (2x-29)=(10x-27) | | |x-12|=19 | | (x+4)^2=(x+12)(x) | | 576=(12+x)(12) | | 24=(12+x)(12) | | 3(6-k)-2(k-5=-4 | | 2x+8=65-9x | | 3x+18+5x-6=180 | | 8x2+7x+17=0 | | (0.03x)+x=5752 | | 60=(4+x)(x) | | (12a)(11a−1)=0 | | 16*6=(8+x)(8) | | 60*6=(8+x)(8) | | 60*6=8x*8 | | -2=7+b | | (60)(6)=(8x)(8) | | 10*6=8x | | 10=-51x+38 | | 13÷x=22 | | -2z-7=29 | | (12a−1)(6a−1)(4a−1)(3a−1)=5 | | W^2-20w=100 | | x15=4575 | | 7x−11/3x+2=3/4 | | -1=7-2x3 | | 3x-5=7, | | m−214=−263 |

Equations solver categories