If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-64=0
a = 2; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·2·(-64)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*2}=\frac{0-16\sqrt{2}}{4} =-\frac{16\sqrt{2}}{4} =-4\sqrt{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*2}=\frac{0+16\sqrt{2}}{4} =\frac{16\sqrt{2}}{4} =4\sqrt{2} $
| 57=3x+9 | | 1/25=7/x | | (25x^2+20x-3)/ 5x =0 | | 3/5b=3/8 | | 7a+10=32 | | 5=7/2(3x+2) | | 41-2n=+2+n | | 0.66666666667(x-3)=-44 | | F(n)=4n+2 | | 7q+87=13q-69 | | 5p=35;p=7 | | 2d+4=2d+2+2 | | 9x+80=24x-100 | | 2/3(x=3)=-44 | | 8x-10=3x90 | | 2x+3=-63 | | X+2÷3=x+4÷5 | | .55a+6.99=11.94 | | 2(3x+3)=2(2x-8) | | 7x-(-5x-17)=-7 | | 15n+73=21n+19 | | 14z+77=31z-25 | | 3.8m-4.5=-1.8(4m+4) | | 18d+18=9d+99 | | x-6/3=-5 | | 21d-99=5d+77 | | A=9.9+6a÷2 | | B+2a=10 | | 20v-9=11v+90 | | 5/6•r=43/5 | | 2/3(5c-1)=-3/5(c+2) | | 5.5x+0.66666666667x=37 |