If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-18y=0
a = 2; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·2·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*2}=\frac{0}{4} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*2}=\frac{36}{4} =9 $
| 6x+28=4x+7 | | 6 | | 5^4x=1/125 | | -6.2(x-6)-5.2(x-3.7)=54.16 | | x-6+3x-36+2x-12=180 | | -n/4=1/2 | | -3(4t-2)+9t=4t-7 | | 5(x-3)-(5x+1)=2(4x+4) | | k+9/2=7/2 | | 2(x-2)-(5x-4)=4(3x+1) | | 9d+27=27 | | -15=-3/7w | | 12y/3=4 | | 12x+6=21x-14 | | 2/7x-2=x+3 | | -8w+5(w-2)=-31 | | -9/5x+5=1/5x-5 | | Y=1/5x-5=1/5x-5 | | Y=(1/5x)-5=(1/5x)-5 | | 5/2x=4/x+2 | | 12x+5-6x=50 | | 6x-3=-7x+10 | | 8x+6-3x+2=30 | | 3x^2-20=12x+93 | | 2/3x-2=4/3(4x+3) | | r-7.7=-7.1 | | 4x+(1/2x)+4=25 | | 4x+2/5x+4=25 | | 4x-2(x+4)=22 | | m^2+13m=-30 | | 4x20=20 | | 6w(2+1)=12w+6 |