If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-18=0
a = 2; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·2·(-18)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*2}=\frac{-12}{4} =-3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*2}=\frac{12}{4} =3 $
| |X^2-4x|=12 | | x+4x=87 | | 6(7x+4)=-9(-8x+4) | | 1/5x—2=4 | | 3-5/6x=2x+8 | | -24=9y+3(8-y) | | X-4.9=0.5x | | 3/4n(n+3)=9 | | -4-6=-2x+8 | | 2x+8=2(×+4 | | -17+8r=4r-3-3r | | 4(x+8)=-36 | | x/3=4.7 | | z/2+6=-9-z/2 | | 7d-15=13 | | 8m-32=4(1+5m) | | 2.5x=32.5 | | 100+.03m=0+.05m | | -49=6c=-13-4c | | 486=27x18 | | 66=6/5(s+3) | | 5x+2x-7=8+7x | | 2.50x=15x1x | | 20+8(q-8)=-12 | | 0.02(2t+6)=0.04(t-1)+0.16 | | 2x(4x^2)=Y | | 2m+3m+-5=m-13 | | 5-(4x+42)=3+4(x+4) | | 2.2x=10.67 | | C=39.57+0.50x | | 5x+3x+10=-2+8x+12 | | 1600=10^x |