If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-17y+21=0
a = 2; b = -17; c = +21;
Δ = b2-4ac
Δ = -172-4·2·21
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-11}{2*2}=\frac{6}{4} =1+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+11}{2*2}=\frac{28}{4} =7 $
| 1-5x-x=5 | | 8z+19=7z+8 | | 3x+7=-6x-53 | | 3-n=6n+24 | | 89=c^2 | | 7+3(2x+1)=14 | | 12x2+5x+3=0 | | 30-3.50g=9 | | 17=-4/3x-5 | | 10k2+5=-94 | | 8x−39=41 | | x+38=3x-12 | | 4n-9=8n-5 | | 4(n-4)-2(n-2)=-8n | | (2x)(3x)(-2x)=0 | | 25x+17=17-2x | | 4x^2+56x−20=0 | | a-2=-4+2a | | 2x+11=5x÷13 | | 5(x+1)=3(3x+7) | | 2x+3(x+1)=-2 | | 9p=12-10p | | 11r−10r=11 | | 15x-9=3(-3+5x) | | 6v-40=-14v | | 6u-8+2(3u+1)=-3(u+5) | | 6x-168=2x-44 | | 1/2(2x-4)=5 | | 10=9x+3/8+8x+9/2 | | 2x=0.45 | | 4x+7+8x=6(x+1)+1 | | 12x-7=-20 |